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On particle multiplicities in three-jet events
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Abstract. A thorough verification of the distinct differences in the properties of quark and gluon jets is
considered as one of the most instructive tests of the basic ideas of QCD. In the real life experiments such a
comparison appears to be quite a delicate task and various subtle issues require further theoretical efforts.
In this paper we discuss in detail the possibility to extract the theoretically adequate information from the
particle multiplicity patterns in three-jet events in e+e− annihilation.

1 Introduction

As well known, the larger colour charge of gluons (CA =
Nc = 3) compared to quarks (CF = (Nc

2 −1)/2Nc = 4/3)
leads to various distinctive differences between the two
types of jets, for recent articles see e.g. [1] and the review
[2]. Thus, a detailed comparison of the properties of quark
and gluon jets provides one of the most instructive tests
of the basic ideas of QCD. An experimental verification
of these differences has been a subject of quite intensive
investigations, especially in the last years, e.g. [3]. How-
ever, obtaining of the theoretically adequate information
about the properties of the gluon jet appears to be not an
easy task. Recall that the analytical QCD results address
the comparison between the energetic gluon and quark
jets emerging from the point-like colourless sources, and
that (unlike the qq case) the pure high energy gg events
at present are not available experimentally1.

So far, most studies of the structure of gluon jets have
been performed in three-jet events of e+e−annihilation.
As a rule, these rely on a jet finding procedure both for
selection of the qqg events and for a separation between
the jets in an event. Without special care, such an analy-
sis is inherently ambiguous and may suffer from the lack
of the direct correspondence to the underlying theory. Re-
cently some more sophisticated approaches have been ex-
ploited (see e.g. [3, 5-8]) which allow better theoretical
significance. There are still a number of issues which are
frequently overlooked in the present gluon jet analyses and
some further theoretical efforts are required. First of all,
this concerns particle multiplicity distributions in the jets.
Clarification of these issues is the main aim of this paper.
More detailed description of the theoretical framework can
be found in [1].

1 In principle, it is possible to create a pure source of the
colour singlet gg events at a future linear e+e−collider through
the process γγ → gg [4]

In particular the following problems are addressed.

1. Different approaches to the three-jet studies employ
different definitions of the qqg kinematics. In particu-
lar, this concerns such a key variable as a transverse
momentum scale of the gluon, p⊥. Our first issue here
is to discuss an exact definition of this quantity, which
governs radiation from the gluon.

2. The definition of the three-jet topology with the gluon
registered at a given p⊥ imposes an obvious require-
ment that there are no other subjets in the event with
the transverse momentum exceeding p⊥. We have to
investigate quantitatively the impact of this require-
ment on the jet sample.

3. To calculate predictions from perturbative QCD, using
the assumption of local parton hadron duality (LPHD)
[9], a cutoff is needed for the infrared singularities. As
discussed in detail in [1] such a cutoff depends on the
soft hadronization process and can not be uniquely
specified from perturbative QCD alone. Thus, the re-
sult is necessarily model dependent.

In what follows we discuss these three issues succes-
sively in Sects. 2, 3 and 4, and in Sect. 5 we study their
effect on analyses of 3-jet events in e+e− annihilation.

2 Definition of p⊥

In the simplest case of soft radiation, p⊥ can be easily de-
fined, as the quark and antiquark specify a unique direc-
tion. For large p⊥ gluons, however, the q and q get recoils
such that there is no obvious direction against which the
transverse momentum should be measured. To have well
defined expressions such a direction has to be specified.
In the Lund dipole formalism [10-16] p⊥ has been defined
according to (subscript Lu for Lund)

p2
⊥Lu ≡ sqgsgq

s
, (1)



346 P. Edén et al.: On particle multiplicities in three-jet events

where sqg denotes the squared mass of the quark-gluon
system etc. In this particular frame the gluon rapidity is
given by the expression

y =
1
2

ln(
sqg

sgq
). (2)

The kinematically allowed region is given by

p⊥Lu <

√
s

2
; |y| < ln

( √
s

p⊥Lu

)
≡ 1

2
(L − κLu);

L ≡ ln(
s

Λ2 ), κLu ≡ ln(
p2

⊥Lu

Λ2 ). (3)

These variables have the advantage that the phase space
element usually expressed in the scaled energy variables
xq and xq is exactly given by the simple relation

sdxqdxq = dp2
⊥Ludy. (4)

As discussed in Sect. 5, p⊥Lu may also work well as a scale
parameter in the QCD cascade.

An alternative definition has also been used in the lit-
erature, e.g. by the Leningrad group [17,18]

p2
⊥Le ≡ sqgsgq

sqq
. (5)

This definition corresponds to the gluon transverse mo-
mentum in the qq cms (with respect to the qq direction).
It is notable that in this frame the gluon rapidity is also ex-
actly given by the expression in (2). The two p⊥-definitions
agree for soft gluons, but deviate for harder gluons. While
p⊥Lu is always bounded by

√
s/2, p⊥Le has no kinematic

upper limit in the massless case.

3 Bias from restrictions
on subjet transverse momenta

The effect of a cutoff in p⊥ has been discussed previously
[11,19]. Here we give a brief review of the results, in order
to end the section with an investigation of the numerical
importance of subleading terms. These are essential for a
correct analysis of three-jet events, which will be discussed
in Sect. 5.

To see the qualitative features of the bias we first study
e+e−→ qq events within the Leading Log approximation
(LLA). The quark and antiquark emit gluons according to
the well-known radiation pattern

dng ≈ CF
αs

π

dxqdxq

(1 − xq)(1 − xq)
= CF

αs(p2
⊥)

π

dp2
⊥

p2
⊥

dy

≡ CF
αs(κ)

π
dκdy; κ ≡ ln(p2

⊥/Λ2). (6)

We have here used (4), and in the following we define p⊥
and y according to (1) and (2), unless otherwise stated.

Due to colour coherence the hadronic multiplicity
Ng(κ) in a gluon jet depends on the p⊥ of the gluon and

not on its energy (see, e.g., [17,18]). Summing up the con-
tributions from all gluons in a cascade we arrive at the
average multiplicity Nqq(L = ln(s/Λ2)) in the original qq
system [13, 15–18] ([15–18] include also nonleading terms.)

Nqq(L) ≈
∫ L

κ0

dκ

∫ 1
2 (L−κ)

− 1
2 (L−κ)

dyCF
αs(κ)

π
Ng(κ)

=
∫ L

κ0

dκ(L − κ)CF
αs(κ)

π
Ng(κ). (7)

(We have here introduced a lower cutoff κ0 for the integral
over transverse momentum. This point will be discussed
in Sect. 4.) Taking the derivative with respect to L we find

N ′
qq(L) ≈

∫ L

κ0

dκCF
αs(κ)

π
Ng(κ). (8)

Consider now a sample of events selected in such a
way that there are no subjets with p⊥ > p⊥cut. (Within
a k⊥-based cluster scheme with a resolution parameter
p⊥cut, this means that there are only two primary q and q
jets.) To obtain the multiplicity Nqq(L, κcut) in this biased
sample, we must restrict the κ integral in (7) to the region
κ < κcut. We then find [11]

Nqq(L, κcut) ≈ Nqq(κcut) + (L − κcut)N ′
qq(κcut). (9)

The first term corresponds to two cones around the q and
q jet directions. Here the p⊥ of the emissions is limited by
the kinematical constraint in (3) rather than by κcut. It
also corresponds exactly to an unbiased qq system with
cms energy p⊥cut. The second term describes a central ra-
pidity plateau of width (L − κcut), in which the limit for
gluon emission is given by the constraint κcut. This expres-
sion for a two-jet event can be generalized for a biased
multi-jet configuration, and a similar discussion applies
also to the multiplicity variance, cf. [11]. (Similar equa-
tions for biased two-jet and three-jet events were later
discussed also in [19].)

The average particle multiplicity in the selected two-
jet sample is smaller than in an unbiased sample. The
modification due to the bias is similar to the suppres-
sion from a Sudakov form factor. It is formally O(αs),
but it also contains a factor ln2(s/p2

⊥). Thus, it is small
for large p⊥ values but it becomes significant for smaller
p⊥. This clearly demonstrates that the multiplicity in this
restricted case depends on two scales,

√
s and p⊥cut. The

p⊥ of an emitted gluon is related to the virtual mass of
the radiating parent quark. Therefore, the two scales

√
s/2

and p⊥cut represent the energy and virtuality of the quark
and antiquark initiating the jets.

Though the LLA result in (9) describes the qualita-
tive features of the bias, subleading corrections are needed
for a quantitative analysis. Within the Modified Leading
Log approximation (MLLA) [20], subleading terms are in-
cluded, which affect the prediction for the unbiased mul-
tiplicities and, thus, implicitly also the biased multiplicity
in (9). Furthermore, it is in [1] shown that the expres-
sion in (9) for the biased multiplicity is explicitly changed
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Fig. 1. The effect from the bias due to a constraint p⊥cut

on emitted subjets, at 90GeV energy. The figure shows the
ratio of biased over unbiased multiplicities as a function of
p⊥cut. The results for LLA and MLLA relations ((9) and (10),
respectively) differ significantly from each other. The result
of the MLLA relation in (10), using the p⊥ definition in (1),
is in good agreement with Ariadne MC and Durham cluster
algorithm results

when MLLA corrections are considered. An unbiased sys-
tem should be restored when p⊥cut approaches the kine-
matical limit

√
s/2, but the r.h.s. of (9) equals the unbi-

ased quantity Nqq(L) only when p⊥cut =
√

s. The relation
consistent with the MLLA is [1]

Nqq(L, κcut) ≈ Nqq(κcut + cq) + (L − κcut − cq)

×N ′
qq(κcut + cq); cq =

3
2
. (10)

The bias is illustrated in Fig.1. The dotted line shows
results from the Ariadne MC [14], when the Durham
cluster algorithm [21] is used to define a biased sample
of events classified as two-jet events with a ycut equal to
p2

⊥cut/s. The MC results agree well with the prediction
of (10), where for p⊥cut we have used the p⊥ definition
in (1) (solid line). The predicted effect is below 5% for
p⊥cut > 20GeV, but increases rapidly for smaller p⊥cut.

Figure 1 presents also the result using the LLA relation
in (9) (dashed line). To elucidate the effect of the differ-
ences between (9) and (10), we have used the same expres-
sion for the unbiased quantities Nqq and N ′

qq. (These are
obtained by a simple fit to Ariadne MC results, which are
in good agreement with the MLLA.) As seen, the sublead-
ing terms are important; the LLA relation significantly
overestimates the effect. To our knowledge experimental
data for this bias have not been presented. Such data
should be obtainable in a rather straightforward analy-
sis, which thus readily could test the accuracy of the MC
result or the MLLA relation.

4 Infrared cutoffs

Gluon radiation diverges for collinear and soft emissions.
Therefore, to estimate the hadronic multiplicity from the

assumption of LPHD [9], a cutoff is needed. Naturally, the
cutoff must be Lorentz invariant. For collinear emissions
a single Feynman diagram dominates, and there are two
possibilities, the virtual mass, µ, of the emitting parent
parton or the transverse momentum, p⊥, of the emitted
gluon measured relative to the parent parton direction.
These quantities are connected by the relation

p2
⊥ = µ2z(1 − z), (11)

where z equals the light cone momentum fraction taken by
the emitted gluon. The transverse momentum is directly
related to the formation time, and, therefore, we regard
this as the most natural choice for a cutoff. (For a further
discussion see [1].)

For soft emissions no obvious cutoff is available, how-
ever. As several Feynman diagrams contribute and inter-
fere, there is no unique parent parton. Consequently µ2 or
p2

⊥ cannot be uniquely specified and, therefore, cannot be
directly used. (Obviously a cut in energy is not possible,
as this is not Lorentz invariant.)

For soft emissions from a single qq colour dipole a cut-
off in p⊥ is still the natural choice if measured in the cms,
where the q and q move back to back. For emissions from
a more complicated state the situation simplifies greatly
in the large-Nc limit, as many interference terms disap-
pear. In this limit the emission corresponds to a set of
independent colour dipoles [22,12]. The natural choice for
the cutoff is then p⊥ in the cms of the emitting dipole
(measured with respect to the dipole direction). We note
that this implies that the soft gluons connect the hard par-
tons in exactly the same way as the string in the string
fragmentation model [23], which illustrates the connection
between perturbative QCD and the string model [17].

For the physical case with 3 colours, extra interfer-
ence terms appear with relative magnitude 1/N2

c [17,24].
Here nonplanar Feynman diagrams contribute, and it is
impossible to uniquely specify a parent parton or a rel-
evant p⊥. Thus, a more fundamental understanding of
confinement is needed to specify the cutoff, which can-
not be determined from perturbative QCD alone [1]. In
hadronization models the 1/N2

c interference terms corre-
spond to the problem of “colour reconnection”, and dif-
ferent models have been proposed [25]. None of these can
be motivated from first principles, and only experimental
data can differentiate among the various models.

In spite of the formal uncertainties, the success of cur-
rent Monte Carlo programs [26,14] indicate that the colour
suppressed interference terms do not have a very large ef-
fect. This is also supported by recent searches by OPAL of
the reconnection effects in hadronic Z events [6]. In most
parton cascade formalisms, a cascade cutoff motivated in
the large-Nc limit is used also for finite Nc. The colour in-
terference effects are accounted for by reducing the colour
factor from Nc/2 to CF in regions collinear with quarks
and antiquarks, and, due to colour coherence, also in some
parts of the central rapidity region. We note, however, that
some subtle interference phenomena, as a matter of prin-
ciple, cannot be absorbed into a probabilistic scheme, see
[24] for details. These are still awaiting a thorough exper-
imental test.
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5 Formalism for three-jet events

After these general discussions we are now ready to con-
sider three-jet qqg systems. To simplify the discussion we
first study the large-Nc limit. The emission of softer glu-
ons from a qqg system corresponds then to two dipoles
which emit gluons independently. If a gluon jet is resolved
with transverse momentum p⊥, this imposes a constraint
on the emission of subjets from the two dipoles. Thus,
the contribution from each dipole is determined by an ex-
pression like (10). For relatively soft primary gluons the
constraint should be given by p⊥cut = p⊥g. For hard glu-
ons p⊥Lu is of the same order as its parent quark virtu-
ality, and in [27] it is shown that O(α2

s) matrix elements
are well described if p⊥Lu is used as an ordering parame-
ter for the perturbative cascade. This is also indicated by
the successful applications of the Ariadne MC. We will,
therefore, assume that the constraint on further emissions
is well described by the identification p⊥cut = p⊥Lu. The
multiplicity in a qg dipole with an upper limit on p⊥ can,
just as for the qq case discussed in Sect. 3, be described as
two forward jet regions and a central plateau.

We note that if the three-jet events were selected using
a cluster algorithm with a fixed resolution scale, then the
constraint on subjet transverse momenta, p⊥cut, would be
smaller than the p⊥ of the gluon jet (as the gluon jet was
resolved). In this case most jet definitions give three jets
which are all biased [11,19]. We will, however, here focus
on three-jet configurations obtained by iterative clustering
until exactly three jets remain, without a specified resolu-
tion scale, where hence the constraint on subjet p⊥ is de-
scribed by p⊥cut = p⊥Lu. As we will see, this implies that
the bias on the gluon jet is negligible, which makes this se-
lection procedure suitable for an investigation of unbiased
gluon jets.

For finite Nc the different dipoles in a multi-parton
configuration can not be completely independent of each
other. However, encouraged by the success of MC pro-
grams, let us assume that the main effect of finite Nc is
that the colour factor, which determines softer gluon emis-
sion, is reduced from Nc/2 to CF in the domains where
the emission is dominated by radiation from the quark or
the antiquark leg. Let us assume that a rapidity range Yq
in the qg dipole is similar to a corresponding range in a
qq dipole, while the remaining range Lqg − Yq is similar
to a range in one half of a gg system. The corresponding
ranges in the gq dipole are Yq and Lgq − Yq. This implies
that the total multiplicity in the qqg event corresponds to
the expression

Nqqg = Nqq(Yq + Yq, κLu)

+
1
2
Ngg(Lqg + Lgq − Yq − Yq, κLu). (12)

For the constraint p⊥cut we have here written κLu, which
is appropriate for the selection procedure discussed above.

As discussed in Sect. 4, the size of Yq and Yq cannot be
uniquely determined within perturbative QCD. Possibly
the most natural choice is to assume that the quantity
Yq + Yq corresponds to the energy in the qq subsystem
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Fig. 2. Nqqg as a function of p⊥Lu for √
sqq = 60 GeV. The

different predictions from (14a,b) and (15) illustrates the im-
portance of the bias at moderate p⊥

[18], which implies

Yq + Yq ≈ ln(sqq/Λ2) ≡ Lqq. (13a)

The relation in (13a) can be regarded as an educated
guess, but a finite shift cannot be excluded. In [15] it is
assumed that

Yq + Yq ≈ ln(s/Λ2) = L, (13b)

which agrees with (13a) to leading order. For relatively
soft gluons we have sqq ≈ s, and in this case (13a) and
(13b) are approximately equivalent. The assumption in
(13a) implies that the energy scale for the gluon term is
given by Lqg + Lgq − Lqq = κLe. Similarly we get from
(13b) the corresponding gluonic energy scale κLu .

The effect of the p⊥ constraint is rather different in the
two terms in (12). For the gluon term the energy scale is
in general only slightly larger than the bias scale κLu. This
implies that in most cases the bias can be disregarded in
this term. Inserting the different assumptions in (13a) and
(13b) into (12) then gives

Nqqg ≈ Nqq(Lqq, κLu) +
1
2
Ngg(κLe), (14a)

Nqqg ≈ Nqq(L, κLu) +
1
2
Ngg(κLu). (14b)

We note that the consistency between (14a) and (14b)
follows from the fact that the total rapidity range in the
two dipoles, Lqg + Lgq, can be expressed in two different
ways by the equalities Lqg+Lgq = Lqq+κLe = L+κLu. In
particular, we see from these equalities that the argument
in Ngg has to be p2

⊥Le in (14a) and p2
⊥Lu in (14b), and not

e.g. (2p⊥)2.
The leading effect of a finite shift in Yq + Yq is colour-

suppressed, and therefore not expected to be large. How-
ever, subleading corrections introduce a difference between
the results of (14a) and (14b). This is seen in Fig.2, where
the difference is approximately 1 particle for √

sqq =
60GeV. In the calculations of Nqqg in Fig.2, we have used
the expressions in [1] for the multiplicities Nqq and Ngg.
These include MLLA corrections and recoil effects, which
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Fig. 3. The prediction for Ngg, obtained by subtracting from
Nqqg the quark contribution Nqq, changes significantly if the
bias in the qq-term is neglected. The figure shows the effect for√

sqq = 60GeV, with Nqqg given by (14a)

implies that Ngg < 2Nqq for accessible energies. Conse-
quently, the result for Nqqg grows with the assumed value
of Yq + Yq.

While the bias is not serious for the gluon term in (12),
it is more important for the qq term. Focusing on events
with comparatively large values of p⊥, where the bias is
less essential, and using the assumption in (13a), we arrive
at the result of [18]:

Nqqg(s, p2
⊥Le) =

[
Nqq(sqq) +

1
2
Ngg(p2

⊥Le)
]

×(1 + O(αs)). (15)

The bias is formally of order αs, and is here taken into
account by the factor (1 + O(αs)). The result of this ex-
pression, neglecting the O(αs) term, is also shown in Fig.2.
The effect of the bias corresponds to less than one charged
particle for p⊥cut larger than ∼ 10GeV, but becomes much
more important for smaller p⊥cut-values.

An alternative way to express this result is the effect on
extracting Ngg from data for Nqqg, as illustrated in Fig.3.
Ngg can be extracted by subtracting the biased quark mul-
tiplicity Nqq(Lqq, κLu) from Nqqg, here assumed to be de-
scribed by (14a). Neglecting the bias in the subtracted Nqq
term gives a significantly different result. The relative ef-
fect of the bias is in this case larger, and it exceeds 20%
for p⊥ < 15GeV. Furthermore, to get a reliable result for
Ngg, the relevance of subleading terms in the biased quark
multiplicity needs to well understood. For the solid line in
Fig.3, the MLLA relation in (10) is used to subtract the qq
contribution from the total multiplicity. Instead using the
LLA relation in (9) would give a prediction for Ngg which
is about three charged particles higher for most values of
p⊥cut.

Although the effect of the bias is very important for
small p⊥, we also see from Figs.2 and 3 that it can be ne-
glected for large p⊥-values, where, thus, the results in [18]
and (15) can be safely used. This implies e.g. that the bias
is negligible in gluon systems defined as the hemisphere
opposite to two quasi-collinear quark jets, thoroughly in-
vestigated by OPAL [5,6].

It would be very interesting to compare the results in
Figs.2 and 3 to experiments. Experimental data on Nqqg
can be directly compared to the Monte Carlo or MLLA
results in Fig.2, Data on the difference Nqqg − Nqq can
be compared either to the predictions in Fig.3 or to ex-
perimental results for Ngg obtained through one of the
methods described in [1]. We have compared the results
in Fig.2 with MC simulations, where the p⊥ scale is deter-
mined by the Durham cluster algorithm. The MC results
(not shown) indicate that an analysis based on jet recon-
struction is accurate enough to illustrate the effects of the
bias, but perhaps not to distinguish between the assump-
tions in (14a) and (14b). We also note that the effects de-
scribed here may have a phenomenological impact on the
recent analysis of Nqqg [8], which employs the two-scale
dependence.

6 Conclusion

A series of subtle effects influence an analysis of the dif-
ference between quark and gluon jets in a real life experi-
ment. In this letter we discuss and clarify effects associated
with

– the definition of p⊥,
– the bias from restrictions on subjet p⊥,
– the problem that infrared cutoffs cannot be uniquely

defined from perturbative QCD.

We also demonstrate the impact of these effects on the
analysis of three-jet events in e+e− annihilation.

Acknowledgements. We thank K. Hamacher, W. Ochs,
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